3.1.99 \(\int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [99]

3.1.99.1 Optimal result
3.1.99.2 Mathematica [C] (verified)
3.1.99.3 Rubi [A] (verified)
3.1.99.4 Maple [B] (verified)
3.1.99.5 Fricas [B] (verification not implemented)
3.1.99.6 Sympy [F]
3.1.99.7 Maxima [F]
3.1.99.8 Giac [F]
3.1.99.9 Mupad [F(-1)]

3.1.99.1 Optimal result

Integrand size = 25, antiderivative size = 128 \[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {(a-2 b) \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 \sqrt {a-b} f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \]

output
1/2*(a-2*b)*arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f/(a-b 
)^(1/2)+arctanh(b^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))*b^(1/2)/f-1/2 
*cos(f*x+e)*sin(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2)/f
 
3.1.99.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 4.36 (sec) , antiderivative size = 273, normalized size of antiderivative = 2.13 \[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=-\frac {\left ((a-b) (a+b+(a-b) \cos (2 (e+f x)))+\sqrt {2} a (-a+b) \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )+\sqrt {2} a (a-2 b) \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticPi}\left (-\frac {b}{a-b},\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )\right ) \sec ^2(e+f x) \sin (2 (e+f x))}{4 \sqrt {2} (a-b) f \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)}} \]

input
Integrate[Sin[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
-1/4*(((a - b)*(a + b + (a - b)*Cos[2*(e + f*x)]) + Sqrt[2]*a*(-a + b)*Sqr 
t[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*EllipticF[ArcSin[ 
Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1] + 
 Sqrt[2]*a*(a - 2*b)*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x] 
^2)/b]*EllipticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f 
*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1])*Sec[e + f*x]^2*Sin[2*(e + f*x)])/(S 
qrt[2]*(a - b)*f*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2])
 
3.1.99.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4146, 369, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (e+f x)^2 \sqrt {a+b \tan (e+f x)^2}dx\)

\(\Big \downarrow \) 4146

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x) \sqrt {b \tan ^2(e+f x)+a}}{\left (\tan ^2(e+f x)+1\right )^2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 369

\(\displaystyle \frac {\frac {1}{2} \int \frac {2 b \tan ^2(e+f x)+a}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {1}{2} \left (2 b \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+(a-2 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)\right )-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {1}{2} \left ((a-2 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+2 b \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}\right )-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{2} \left ((a-2 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )\right )-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{2} \left ((a-2 b) \int \frac {1}{1-\frac {(b-a) \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}+2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )\right )-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{2} \left (\frac {(a-2 b) \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {a-b}}+2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )\right )-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

input
Int[Sin[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
((((a - 2*b)*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]] 
)/Sqrt[a - b] + 2*Sqrt[b]*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b*Tan[e 
+ f*x]^2]])/2 - (Tan[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(2*(1 + Tan[e + 
f*x]^2)))/f
 

3.1.99.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 369
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2* 
b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1))   Int[(e*x)^(m - 2)*(a + b*x^2)^(p 
 + 1)*(c + d*x^2)^(q - 1)*Simp[c*(m - 1) + d*(m + 2*q - 1)*x^2, x], x], x] 
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 0 
] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4146
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_ 
)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[c*(ff^(m + 1)/f)   Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)^(m/ 
2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x 
] && IntegerQ[m/2]
 
3.1.99.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(369\) vs. \(2(110)=220\).

Time = 5.08 (sec) , antiderivative size = 370, normalized size of antiderivative = 2.89

method result size
default \(\frac {\left (-\sqrt {a -b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \cos \left (f x +e \right ) \sin \left (f x +e \right )+2 \sqrt {b}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {b}}\right ) \sqrt {a -b}-\sqrt {a -b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sin \left (f x +e \right )-\arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) a +2 \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) b \right ) \sqrt {a +b \tan \left (f x +e \right )^{2}}\, \cos \left (f x +e \right )}{2 f \sqrt {a -b}\, \left (\cos \left (f x +e \right )+1\right ) \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}}\) \(370\)

input
int(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2/f/(a-b)^(1/2)*(-(a-b)^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f* 
x+e)+1)^2)^(1/2)*cos(f*x+e)*sin(f*x+e)+2*b^(1/2)*arctanh(1/b^(1/2)*((a*cos 
(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e))) 
*(a-b)^(1/2)-(a-b)^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1) 
^2)^(1/2)*sin(f*x+e)-arctan(1/(a-b)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2) 
/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*a+2*arctan(1/(a-b)^(1/2) 
*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc( 
f*x+e)))*b)*(a+b*tan(f*x+e)^2)^(1/2)*cos(f*x+e)/(cos(f*x+e)+1)/((a*cos(f*x 
+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)
 
3.1.99.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 368 vs. \(2 (110) = 220\).

Time = 0.85 (sec) , antiderivative size = 1847, normalized size of antiderivative = 14.43 \[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\text {Too large to display} \]

input
integrate(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[-1/16*(8*(a - b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f* 
x + e)*sin(f*x + e) - (a - 2*b)*sqrt(-a + b)*log(128*(a^4 - 4*a^3*b + 6*a^ 
2*b^2 - 4*a*b^3 + b^4)*cos(f*x + e)^8 - 256*(a^4 - 5*a^3*b + 9*a^2*b^2 - 7 
*a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^4 - 34*a^3*b + 77*a^2*b^2 - 72*a* 
b^3 + 24*b^4)*cos(f*x + e)^4 + a^4 - 32*a^3*b + 160*a^2*b^2 - 256*a*b^3 + 
128*b^4 - 32*(a^4 - 11*a^3*b + 34*a^2*b^2 - 40*a*b^3 + 16*b^4)*cos(f*x + e 
)^2 - 8*(16*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*cos(f*x + e)^7 - 24*(a^3 - 4*a 
^2*b + 5*a*b^2 - 2*b^3)*cos(f*x + e)^5 + 2*(5*a^3 - 29*a^2*b + 48*a*b^2 - 
24*b^3)*cos(f*x + e)^3 - (a^3 - 10*a^2*b + 24*a*b^2 - 16*b^3)*cos(f*x + e) 
)*sqrt(-a + b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + 
 e)) - 4*(a - b)*sqrt(b)*log(((a^2 - 8*a*b + 8*b^2)*cos(f*x + e)^4 + 8*(a* 
b - 2*b^2)*cos(f*x + e)^2 + 4*((a - 2*b)*cos(f*x + e)^3 + 2*b*cos(f*x + e) 
)*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 
 8*b^2)/cos(f*x + e)^4))/((a - b)*f), -1/16*(8*(a - b)*sqrt(((a - b)*cos(f 
*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) + 8*(a - b)*sqrt( 
-b)*arctan(1/2*((a - 2*b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt 
(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(((a*b - b^2)*cos(f*x + e)^2 
 + b^2)*sin(f*x + e))) - (a - 2*b)*sqrt(-a + b)*log(128*(a^4 - 4*a^3*b + 6 
*a^2*b^2 - 4*a*b^3 + b^4)*cos(f*x + e)^8 - 256*(a^4 - 5*a^3*b + 9*a^2*b^2 
- 7*a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^4 - 34*a^3*b + 77*a^2*b^2 -...
 
3.1.99.6 Sympy [F]

\[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \sin ^{2}{\left (e + f x \right )}\, dx \]

input
integrate(sin(f*x+e)**2*(a+b*tan(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*tan(e + f*x)**2)*sin(e + f*x)**2, x)
 
3.1.99.7 Maxima [F]

\[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int { \sqrt {b \tan \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{2} \,d x } \]

input
integrate(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*tan(f*x + e)^2 + a)*sin(f*x + e)^2, x)
 
3.1.99.8 Giac [F]

\[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int { \sqrt {b \tan \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{2} \,d x } \]

input
integrate(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*tan(f*x + e)^2 + a)*sin(f*x + e)^2, x)
 
3.1.99.9 Mupad [F(-1)]

Timed out. \[ \int \sin ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int {\sin \left (e+f\,x\right )}^2\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a} \,d x \]

input
int(sin(e + f*x)^2*(a + b*tan(e + f*x)^2)^(1/2),x)
 
output
int(sin(e + f*x)^2*(a + b*tan(e + f*x)^2)^(1/2), x)